

HyMEET Programme Unlock H₂ technological barriers R&D - Engineering - Testing - Consulting - Trainings

Mechanical industries serving the hydrogene value chain

Hymeet : Cetim strategic program on H₂

To support the mechanical industry as a major player in the development of production, storage, transport and distribution sectors up to final uses.

HyMEET Programme

R&D road map and activities

Material expertise, characterisation and testing

H2 associated developpements

NH3

Standardization & Knowledge dissemination

2020

Thor

Hydrogen Europe

C-PIMPS

Confidential

202 202 202 202 202 202 202

Aidhy

Under

Under

Énergétiques

GERC

2021 2028

2019 H2 Ref **Refuelling station TP composite tank**

Pipe Integrity Cryogenic tank design and manufacturing Gas distribution network tightness H₂ production Barge **Refuelling station** Aeronautical demonstrator Social acceptance for low carbon H₂ production strategies Technological barriers for aeronautic H₂ distribution Leak and tightness criteria H₂ agricultural machine demonstrator H₂ injection system Composite pipes for H₂ transportation Rolling bearing in H₂ environment H2 Off road machine demonstrator **Composite pipe evaluation**

Member of

Strategic players

-1 12

Scientific & Technologic Partnership for H₂

2024

2023

2022

2025

2026

2021

Fatigue damage of H₂ Pressurized Storage Equipement by Phase Field Method IMT Nord Europe, CERI MP: Dr. Chaki

A PhD & MSc program

PHyDROMAT: Behaviour of Metallic Materials for aeronatical applications Member of the Scientific & Strategic Committe (3 PhD)

> H₂ / plasticity interaction of Austenitic Stainless Steel Kyushu University, Dpt of Mechanical Engineering: Prof. Matsunaga Université La Rochelle, LaSIE UMR CNRS 7356: Prof. Feaugas

Flexible organic piezoelectric UT sensors for NDT & SHM of pressure tanks Université Bordeaux, I2M UMR 5295: Prof. Meziane

Performance & durability of elastomer seals for Carbon-free applications Institut Pprime, UPR CNRS 3346 : Prof. Gigliotti

Numerical and experimental study of valve packing: application to the reduction of fugitive hydrogen emissions IRDL: Prof. xxxx

=+ 2 PhD under construction

ONERA

P

INTRACE

IRDI

Mechanical testing under H₂ environment

- Temperature: from 20K to 700K
- In addition, pressure vessel for static ageing/uptaking until 350°C & 1000 bars

Multi-scale material Characterization

Mechanical & Metallurgical

Multi-scale material Characterization

Nano indentation – equipment and R&D project

PI 85E SEM PicoIndenter®

2 devices : standalone and SEM in-situ

- Local mechanical characterisation
 - Hardness (nano and micro scale)
 - Young's modulus
 - Behaviour laws (micro-pillar)
- Surfaces characterisation
- Analysis of metallurgical phases or powder grains
- Nano-scale hardness mapping
- Studies on a wide range of materials, including composites/thin films

Physico-chemical analysis / characterization

H₂ Quantification in Metallic Materials

Thermo-desorption spectroscopy

Permeation

- Electro-chemical permeation
- Gaseous permeation
 - Temperature: up to 200°C
 - Pression: up to 400 bar

High-Pressure H₂ tribometer

Reciprocating Tribometer

- **3** Workstations
- Max Pressure: 80 bar
- Operating Conditions
 - Stroke: 0 to 20 mm
 - Frequency: 0 to 5 Hz
 - Normal Load: 5 to 50 N
 - Temperature: -55 to 150°C

Sealing performances

Fugitive emissions & Leakage

Bolted flange connections

Ageing @80°C

2000 kN load capacity, up to 200 bar

Test cell for sealing tests & mechanical tests on flat gaskets

EVOLEN	[CITEPH]
ш	

- Components characterization
 - Definition of acceptable leakage rates
 - Leakage monitoring

@ Vallourec VAM[®] connections

Sealing performances

Fugitive emissions & Leakage

- Rapid gas decompression 1000bar & 70bar/min
- Material ageing
- Permeation tests & fugitive emissions
- Leakage monitoring

Permeation

Ageing

H₂ rapid gas decompression

ATEX Lab for H₂

Deep cryogenic testing facilities

Deployement of dedicated equipements

- Rapid gas decompression 1000bar & 70bar/min
- Thermo Mecanical Analysis down to 4K

Cryogenic TMA

Deep Cryo Management

- Liquefier He / H₂ 100 L / day
- Associated Cryostats
- Instruction Dynamic seals in LH₂
- Instruction flow rate testing needs

Liquefier & cryostat in LH₂ configuration

Material / design/ process: HySPIDE TP®

HySPIDE TP[®] (Laser Assisted Tape Placement / Winding):

- New fully automated pilot line dedicated to CTP tank manufacturing
- In-situ TP consolidation with last generation and unique optimized head
- Benefits : Quality, repeatability and reliability, 7 tolerance to damage, 1 cost & Reduction
 of the environmental footprint

Réservoir Cetim de type IV-b (Projet EU THOR)

Control & Monitoring: Tanks monitoring

H₂ type IV tanks control & monitoring:

- NDT testing
- Testing & monitoring at scale 1
- Support in damage understanding

Dedicated H₂ testing plateform

Hymeet tests plateform dedicated to H₂

- 1850m² in Nantes
- 4th Quater 2024

Pour un futur industriel responsable et respectueux de la planète

Multi-scale material Characterization

4 laboratories

Tensile tests (NF EN ISO 6892-1 ou ATSM E8M)

- Capacity: 150kN, 300kN, 600kN.
- Temperature range: -185°C to 1200°C
- Hardness and microhardness (NF EN ISO 6506, 6507, 6508) Rockwell, Brinell, Vickers

Impact test (NF EN ISO 148-1)

Down to -196°C Possible at high temperature Determination of ductile/brittle transition curves

- Flexion, Compression, Shear
- Instrumented mechanical testing (strain gauges)
- Determination of behaviour laws
 - Voce $\sigma = \sigma 0 \cdot (1 e A\epsilon)$
 - Hollomon $\sigma = k \cdot \epsilon n$

Mechanical testing at Cetim

Example of mechanical tests at RVE scale

- Constitutive behavior of materials
 - Monotoneous : tensile test on a large range of strain rate (from 10⁻⁶ s⁻¹ to 10⁻¹ s⁻¹), relaxation tests, creep tests …
 - Cyclic : cyclic hardening tests with or w/o dwell time under iso and anisothermal conditions (100-900°C)
- Strengh of materials
 - ► Toughness : K, J, CTOD, R-Curve
 - Force or strain controlled fatigue test under iso and anisothermal conditions
 - Fatigue crack growth & threshold tests under various configurations
- Testing facility located at Senlis, Saint Etienne and Nantes (dedicated to severe gaseous env.)

Temperature & environment

- ► In air: from -185°C to 950°C
- ► In liquid env. : NaCl, Simili-blood
- In gazeous env.
- Lot of measurement techniques used to support strain (global/local) and crack advance (DPCD, COD) monitoring

Front crack markings for DPCD calibration *With courtesy of Safran aircraft engine*31

Crack propagation from EDM notch on KBR specimen monitor by DPCD techniques